Пластиковые трубы имеют множество преимуществ перед металлическими, однако пластиковая трубопроводная арматура имеет свои особенности, которые нужно учитывать при проектировании и монтаже внутридомовых инженерных систем. Речь идет о температурном или линейном расширении.
Что такое линейное расширение
Линейное расширение – это увеличение длины трубопровода при воздействии температуры теплоносителя и окружающей среды в силу физических свойств полимеров, которые обусловливают изменения структуры материала под воздействием перепадов температуры.
Полипропилен имеет достаточно высокий коэффициент температурного расширения, и при нагреве рабочей среды до 70 °С может увеличиваться в длину до 1,5-1,7 см. Это необходимо учитывать при проектировании и монтаже систем горячего водоснабжения и отопления, т.к. в противном случае это приведет к деформации, срыву креплений, завоздушиванию и снижению теплоотдачи батарей.
Если выполнить монтаж инженерной системы без учета этой особенности полимера, это может привести к деформации и неисправностям в работе трубопровода, особенно при установке системы большой длины (от 10 м).
На практике линейное расширение выглядит как сдвиг участка трубопровода: трубы в местах поворотов и фланцевых соединений словно отклоняются от вертикальной оси приблизительно на 1,5-1,7 см.
Ошибки в проектировании, когда специалист забывает учесть коэффициент температурного расширения (КТР), часто приводят к отклонению трубы от заданной оси, из-за чего участок трубопровода выглядит волнообразным.
Отсутствие специальных компенсирующих элементов приводит к тому, что трубы начинают прогибаться, провисать и деформироваться, что существенно снижает срок эксплуатации.
Для расчета необходимой длины трубопровода, а также мест установки компенсаторов используется специальная формула. В ней учитывается температура окружающей и рабочей среды, тип материала (армированный/неармированный полипропилен), длина участка. Полученный коэффициент переводят в сантиметры и добавляют к расчетной длине трубопровода.
Это важно! Расчет коэффициента температурного расширения актуален только для систем горячего водоснабжения и отопления, где вода нагревается до 70 °С и выше. Полипропиленовые трубы в системе холодного водоснабжения практически не меняют физических свойств, поэтому этот параметр брать во внимание при монтаже не нужно.
Зависимость структуры материала от воздействия температуры
Следует отличать максимальную температуру, которую могут выдержать ПП-трубы, от их реальных физических свойств. Несмотря на то, что производитель указывает показатель температуры плавления полипропилена 170 °С, на самом деле полипропиленовые изделия начинают размягчаться уже при 135-140 °С.
Установка таких труб без учета температурного расширения – это не просто риск деформации. Последствия ошибок в проектировании инженерных систем могут быть значительные:
- происходит срыв крепежных элементов;
- на деформированном участке скапливается воздух, снижающий пропускную способность системы (т.н. завоздушивание);
- температура радиаторов и стояков снижается, система работает менее эффективно;
- трубы лопаются, возникают утечка теплоносителя.
Важно! Для монтажа инженерных систем используются неармированные и армированные ПП-трубы. Вторые имеют дополнительный слой, который защищает внешний слой полимера от перегрева. Благодаря этому снижается коэффициент температурного расширения трубы, но полностью он не нивелируется.
У армированных полипропиленовых труб КТР меньше, но его все равно нужно учитывать.
Усредненные показатели коэффициент температурного расширения:
- неармированные – 0,15 мм/мК;
- армированные металлом – 0,03 мм/мК;
- армированные стекловолокном – 0,035 мм/мК.
На деле коэффициент температурного расширения для неармированных ПП-труб 0,15 мм выглядит как удлинение участка на 1 см на каждый метр трубопровода, если температура рабочей среды достигнет 70°С.
Внимание! Это не означает, что труба длиной 5 м удлинится на 5 см при запуске горячей воды. В системах горячего водоснабжения температура воды составляет максимум 65°С, следовательно коэффициент расширения также будет меньше.
Но, в конечном счете, при расчете длины инженерной системы нужно учитывать реальные температурные показатели. Для системы отопления длина трубы может увеличиться на 5 см и более.
Назад к оглавлению
Расчет коэффициента расширения для различных видов труб
Существует формула для расчета расширения полипропиленовых труб при нагреве, позволяющая определить, насколько увеличится длина трубопровода:
Д=к*ДТ*t, где
- Д — искомая длина участка после нагрева;
- к — коэффициент температурного расширения;
- ДТ — проектная длина трубопровода в метрах;
- t – разница температур между воздухом в помещении и теплоносителем.
Например, для установки системы отопления протяженностью 10 метров и проектной температурой теплоносителя 90 °С будут использоваться армированные алюминием полипропиленовые трубы.
Температура в комнате во время монтажа составляет 25 °С. Используя формулу, можно определить длину участка после нагрева: 0,03*(90-25)*10 = 19,5 мм.
То есть к трубопроводу из армированного полипропилена протяженностью в 10 м при проектировании необходимо еще добавить запас длины 1,95 см.
Назад к оглавлению
Монтаж с учетом показателя линейного расширения
При монтаже трубопровода для горячего водоснабжения и отопления (в т.ч. системы «теплый пол») обязательно нужно учитывать удлинение трубы в результате воздействия высокой температуры.
Оптимальный выбор изделий для установки трубопровода – армированные трубы со стекловолоконным или алюминиевым внутренним слоем. Армирование — слой фольги или стекловолокна — поглощает часть тепловой энергии от теплоносителя и сокращает коэффициент температурного расширения полимера. Благодаря этому потребность в компенсации физических изменений будет также снижена.
Правила монтажа труб с учетом линейного расширения:
- между трубопроводом и стеной в помещении необходимо оставить небольшой зазор, т.к. трубы могут отклоняться от своей оси при нагреве и идти волнообразно;
- особенно важно оставить небольшие зазоры в углах помещений, где трубы соединяются поворотными муфтами или фланцами;
- на длинных участках трубопровода устанавливают специальные компенсаторы линейного расширения, которые одновременно фиксируют трубопровод в своей плоскости, но позволяют ей смещаться по направлению монтажа;
- желательно снизить количество жестких стыков, чтобы обеспечить гибкость трубопроводу.
В некоторых системах горячего водоснабжения и отопления на базе армированных и неармированных изделий можно увидеть различные способы т.н. самокомпенсации температурного расширения за счет упругой деформации полипропилена.
Чаще всего используются петлеобразные компенсирующие участки – кольцевые повороты с подвижной фиксацией на стене. Петля, полученная в результате такой установки, сжимается и расширяется при нагревании/остывании теплоносителя, не влияя на положение и геометрию трубопровода на остальных участках.
Компенсаторы расширения труб
Кроме самокомпенсации, предотвратить деформацию труб в результате температурного расширения можно с помощью дополнительных приспособлений – механических компенсаторов. Они устанавливаются на Г- и П-образных участках трубопроводов и представляют собой скользящие опоры, через которые проходит труба.
Специальные компенсаторы расширения делятся на несколько типов:
- Осевые (сильфонные) – приспособления в виде двух фланцев, между которыми находится пружина, компенсирующая сжатие и расширение участка трубопровода. Крепятся неподвижно к опоре.
- Сдвиговые – используются для компенсации осевого отклонения участка трубопровода при температурном расширении.
- Поворотные – устанавливаются на участках поворота магистрали для уменьшения деформации.
- Универсальные – объединяют расширения во всех направлениях, компенсируя поворот, сдвиг и сжатие трубы.
Компенсатор Козлова
Существует также новый вид устройства, названный в честь своего разработчика – компенсатор Козлова. Это более компактное устройство, внешне напоминающее участок трубопровода из полипропилена.
Внутри компенсатора находится пружина, которая поглощает энергию расширения труб в пределах участка, сжимаясь при нагреве воды и расширяясь при остывании. Преимущество компенсатора Козлова перед другими видами приспособлений – более легкий и простой монтаж, а также сокращение расхода арматуры.
В отличие от петлеобразного участка, при монтаже компенсатора Козлова достаточно соединить участок труб фланцевым или сварным способом.
Армирующий слой не может поглощать энергию, тем более тепловую. Ну и с разницами температур неплохо было бы разобраться.
Эй, брат, ты прав, но вот у меня был случай: когда стены у нас сильно остывали, заметили, что армирующий слой на самом деле как бы задерживает тепло. Могу понять, откуда такие мысли. Главное — разбираться со всеми нюансами, тогда и проблем будет меньше!